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gastability and spinodals in the lattice gas model

CDomb
Wheatstone Physics Laboratory, King’s College, Strand, London WC2R 2LS, UK

Received 10 July 1975, in final form 4 August 1975

Abstract. The droplet model of condensation as developed by Fisher is modified to take
account of: (@) ramified clusters whose surface/volume ratio tends to a finite limit as the
number n of constituent molecules becomes large; (b) the excluded volume interactions
between clusters. It is found that the interactions change the position of the first singularity
in the activity series so that it no longer coincides with the phase boundary but is located
beyond it. A thermodynamic metastable state can then be defined as in the classical Gibbs
picture. At sufficiently low temperatures compact clusters (ie those in which the
surface/volume ratio tends to zero for large n) dominate and give rise to an essential
singularity. Near the critical temperature ramified clusters dominate and give rise to a
spinodal line with a branch point singularity. Critical behaviour can be explained in terms of
ramified clusters alone.

| btroduction

Yig the 1930s two independent approaches were pursued for the problem of the
;!Idensation of a classical gas of molecules with short-range repulsive forces and
&grrange attractive forces. The cluster integral theory developed by Mayer (and
g‘Pﬂ) following initial steps taken by Ursell, succeeded in obtaining formally a power
s expansion for the free energy. When the expansion variable is the absolute
iy, }he coefficients are multiple integrals of the intermolecular potential termed
k‘ef iﬂtegrals’; when the expansion variable is the density, the coefficients are
W@ ireducible cluster integrals’ and are simply and directly related to the virial
widents of the condensing gas. The formalism can be developed elegantly using the
EP;:: lgrgp;) theory (for a general review see Uhlenbeck and Ford 1962, Domb
m’e were high hopes in the 1940s and early 1950s that this development would
_ adeta}led description of the liquid-vapour phase transition, and the phenomena
%“dtthth th; critical. point. However, it became clear that the problem of
g dglittel behaviour of hlgher-m.'der cluster integrals presented formidable difficul-
quest‘e progress was made either theoretically or numerically.
Eencézxfl discussed at some length 'in the earlier literature is the radii of
g the two power series, and their physical significance. It was first assumed
. i ;} of convergence wou}d correspond to the phase boundary, and that the
$0 contain a potential description of the liquid phase. The rigorous
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treatment by Yang and Lee (1952) of a lattice gas provided strong evidence that thiS wag
not the case, and that to explain the equilibrium between the two phases, 3

function must be defined which started from the liquid side (see e.g. Yang 1972),
alternative interpretation was then put forward that the radii of convergence might
represent the limit of stability of the condensing gas, which, in accordance wity the
classical ideas of Gibbs, was taken to be beyond the equilibrium condensation pojy,

Subsequent detailed analysis of the lattice—gas model (Gaunt and Domb 1975) pa
shown that the density expansion is complex, and that its radius of convergence does not
correspond to a physical singularity. The nature of this expansion changes from attice
to lattice, and the series is not suitable for asymptotic assessment. However, the activity
series settled down to a regular pattern of behaviour which can be related to the criticg
point and its properties.

In parallel with the above development, a non-rigorous but empirical approach to
the problem was initiated by Becker and Déring (1935) which considered the growth of
individual droplets and applied the methods of chemical Kinetics to estimate their
growth. This approach was further explored by Bijl (1938), Frenkel (1939a,b) and
Band (19392, b), and Frenkel’s treatment forms the basis of modern nucleation theory
(Zettlemoyer 1969). Each droplet is treated as a sphere whose free energy dependson
its surface and volume and is therefore determined by its radius. No attempt is made to
take account of interactions between droplets, and the possibility of different sizes and
shapes of droplet are regarded as of secondary importance. In nucleation theory these
assumptions are reasonable.

Infact, asindicated above, the cluster integral treatment makes no such assumptions
and treats the problem correctly and exactly. However, Frenkel (19392) argued with
some cogency that the theory ‘because of its mathematical intricacy will hardly appeal
to the experimental physicist or chemist’.

The droplet approach was taken up in a preliminary way by Essam and Fisher
(1963), and in more detail by Fisher (1967). By using the results of Ising model
enumerations, Fisher was able to take account of the different sizes and shapes of
droplet, and to conjecture a formula for the entropy of droplets in relation to thei
surface area. He then constructed a mimic partition function from which he drew 2
number of conclusions. Among them are: (a) the radius of convergence of the activity
series is identical with the phase boundary below the critical temperature; (b) the
activity series terminates in an essential singularity; (c) no metastable extension of the
gaseous phase beyond the phase boundary exists in the true thermodynamic sense.

Fisher’s treatment is unsatisfactory in two important respects; it ignores the eﬁef.:tof
a wide class of droplets, and it fails to take the interaction between droplets 0
account. Attempts have been made tc modify the treatment to remedy these defects (eg
Reatto 1970, Reatto and Rastelli 1972, Stauffer et al 1971), but we feel that theyarc
empirical in character and do not get to the heart of the problem. In the present_PaPer!
therefore, we return to the Mayer treatment in its application to the Ising or lattice-g8
problem. We find that we can modify Fisher’s treatment so as to include an ‘interact®
function’ to take account of the volume exclusion of droplets. We also take acoount(
an extensive class of ‘ramified’ droplets which were not considered by Fisher. In certaid
particular cases the interaction function can be calculated exactly, and more generet
series expansions can be developed from which its behaviour can be estimated- From
this treatment we are led to conclusions, some of which differ substantially from tho¥
Fisher; and in the neighbourhood of the critical point we find that ramified dropletspl#f
a dominant role.



Metastability and spinodals in the lattice gas model 285

zw'“l description of phase equilibrium

frstsummarize the essential features of the classical theory of phase equilibrium as
* py van der Waals equation and amplified by Gibbs. Figure 1 shows the
goiard form of isothermal below the critical temperature T.. The stable equilibrium

Figure 1. Stable and metastable states in the van der Waals picture. Points C and E are
spinodals and represent the limits of stability of the liquid and gaseous phases. Full curve,
stable; broken curve, metastable; dotted curve, unstable.

sate corresponds to A B D F G, where the horizontal line B D Fisdrawnso as to make
feareas BCD and D EF equal. However, if the vapour phase is suppressed, the
fqidphase A B can be continued as a metastable extension as far as Cwhere (3p/aV)r
becomes zero. No extension is possible beyond C since the phase becomes ther-
modynamically unstable. Likewise, if the liquid phase is suppressed, the vapour phase
mqbe continued as a metastable extension as far as E where it ceases to be stable.
MtsC and E trace out ‘spinodal lines’, and the phenomenon of spinodal decomposi-
ton s of great importance in the kinetics of phase growth (Cahn 1971).

The magnetic analogue of the above is illustrated in figure 2, where the magnetic
feld H corresponds to the pressure, and the magnetization to the density (N/V).
ﬁOWever, there is a great simplification in the magnetic system because of the symmetry
regard to reversal of magnetic field. We shall therefore concentrate on the magnetic
P'Dble‘m_smce itis widely felt that the patterns of behaviour for fluids and magnets are
"1y similar (see eg Vicentini-Missoni 1972).

It s instructive to look at the above picture in terms of free energy. Figure 3
:gﬁents the Helmholtz free energy as a function of magnetization. The stable phase

5ponds to the ‘two-tangent’ line B F, and the spinodal lines to points of inflection.

Y, figure 4 presents the more usual picture of the Gibbs free energy as a function of
%fzggg, l:)vherc.a the metastable extensions correspond to supercooled and
iy cliioases. It should l?e notefi that tpe two Phases are representeq by separate
elibrig, T :1}15_, ax}d there is no smgt;lanty in either phase': at thg point of stable
ntte (G pi 1S picture the spinodal lines correspond to points of infinite curvature
, D) plane.
:m?csb(;g: classical _picture has been shown to follow rigorously from statistical
; models with very long-range forces, ie of the form AJ exp (—AR) where A

Balloweg
fotend to zero (Hemmer and Lebowitz 1975). The basic physical problem is
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Figure 2. Stable and metastable states in the classical picture of a ferromagnet. PointsCand
E are spinodals and represeat the limits of stability of spin-up and spin-down phases. Full
curve, stable; broken curve, metastable; dotted curve, unstable.

Mip}

Figure 3. Helmholtz free energy of a classical ferromagnet (or fluid). Points of inﬂeaioglg
and E are spinodals which represent the limits of stability of the phases. Fuil curve, Stank:
broken curve, metastable; dotted curve, unstable.

to find how this picture is modified when realistic short-range forces are sub§timt€d f‘;;
the long-range forces; these introduce surface effects which play a major role
determining the growth and interaction of finite clusters.

3. Metastable states in the Ising model

Consider an Ising model of

N spins with nearest-neighbour interactions in 8 lare

magnetic field H at a given temperature T. If the field is sufficiently large the spins
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Figure 4. Gibbs free energy of a classical fluid (or ferromagnet). The two phases correspond
to two different analytic branches and there is no singularity in either at their intersection.
Full curve, stable; broken curve, metastable. A, phase I; B, phase I, superheated; C, phase

1I; D, phase 11, superheated.

dlfine up in the direction of the field. We now gradually reduce the field H, allowing
gins 0 overturn in accordance with Boltzmann’s relation. However, to obtain a
metastable state we must suppress the second phase, which consists of all the spins
digned in a direction opposite to the field and states derived from it, by overturning a
fuite number of spins. As long as H > 0 such states are excluded when N is large by the
Boltzmann factor, which is of order exp(—NBmH) (where m is the magnetic moment of
agpin). However, when H=<0 these states are of major importance in determining
termodynamic equilibrium, and our system is metastable.

Anyexcited state can now be characterized as a series of groups of overturned spins
woanected together as ‘droplets’ (figure 5). All sizes and shapes of droplet are possible,
ad there is an interaction between droplets arising from their finite size (excluded
wiume interaction). Each individual droplet, con51st1ng of n connected overturned
yins and s broken bonds, has a Boltzmann factor y"z® where

y=exp(—2BmH), z =exp(—28J) 1)

ad Jis the energy of interaction of a pair of parallel spins. To ensure that the system

. ——

Figure 5, Interacting droplets in the Ising model.
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remains metastable we must further restrict any droplet from growing to a size of order
N (Penrose and Lebowitz 1975, unpublished).

In the lattice gas interpretation, each overturned spin corresponds to a particie, apg
the original spins correspond to holes.

Each droplet corresponds to an embedding of a connected graph of n vertjces and |
lines on the lattice, where the surface area of the droplet is defined by

s=nq—21 . (2)

and q is the coordination number of the lattice. The number of embeddings of the

on the lattice is usually referred to as the strong latfice constant of the graph (see o
Domb 1974). The term strong is used to describe embeddings in which all occupied
sites which are nearest neighbours are connected by a bond of the graph. We sha)
denote the fotal number of strong embeddings of all connected graphs with a given »
and I by G(n, I), and this represents the total number of droplets of n spins with a givep
surface area s; it also defines the entropy of droplets with this surface area.

4, Specification of droplets

Following Fisher (1967), we now classify droplets according to their shape. For agiven
n there is 2 minimum possible value of s, say s,, corresponding to the most compact
embedding, and a maximum value s, (= ng —2n+2) corresponding to the embedding
of Cayley tree configurations. As n becomes large s, corresponds to a sphere-in three
dimensions, or a circle in two dimensions. Fisher found it convenient to introduce a
parameter ¢ to specify the shape, where

s=An°, (oo<o=1). 3

The constant A is a numerical factor of order unity, taking account, for example, of the
difference between cubical or spherical droplets which have the same value of o; the
formula applies asymptotically for large n. o, corresponds to the most compact
embeddings, and is equal to § in three dimensions and % in two dimensions, o=!
corresponds to ‘ramified’ embeddings whose surface is proportional to their bulk.

It is possible to specify A precisely only for configurations of a particular shape.
Since new shapes enter continually as n increases, it is better for some purposes o drop
the constant A, and o can then be uniquely defined for any configuration. Th
distribution G(n,l) can be derived numerically for finite n and the change oo
represents a convenient change of scale. Qur main interest is in the asymptof
behaviour of G(n, I) for large n, and we shall assume that it approaches a continuous
distribution I'(n, o) do, where oy<o=<1.

Fisher confined his attention to droplets with o'y< 1 which we shall call comps
(figure 6(a)). This is the type of droplet envisaged in the earlier theories without 2
internal holes. However, he took an important step forward in estimating the entropy
of such droplets as a function of 5. In two dimensions the ‘surface’ of each droplets3
self-avoiding polygon whose length is approximately proportional to s. It hasbees v
established by numerical studies that the number of such polygons u(s) is asympio
cally of the form (see eg Domb 1969)

u(s)~p’/s" @
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i

lo}
(6)

(c)

Figure 6. Different types of droplet: (a) compact, ¢ <1; (b) ramified, o = 1; (c) hybrid.

Jere  is @ numerical constant characteristic of the lattice, and 7 is an exponer}t which
to be universal (ie independent of lattice structure) in a given dimension.

Fisher assumed that a formula of type (4) is valid quite generally for droplets of any
wtiaer o in any dimension, and this suggestion seems very plausible. He further
asmed that for large s one particular value of o, say &, would dominate asymptotically
wmrall others. This is again supported by numerical studies on self-avoiding polygons
atwo dimensions (Hiley and Sykes 1961), the appropriate value of & then being Z
T sssumption means that for compact droplets the distribution I'(n, o) approaches
e form

I(n, o)~ "’ n~" 8(c~5). (5)

We now take account of droplets with o = 1 which were not considered by Fisher.
Weshall cali these ramified ; they include self-avoiding walks and polygons, and Cayley
teeswith a finite number of nodes, and are therefore very extensive; a typical ramified
dwletis depicted in figure 6(b). It is clear that they are extensive in number, and must
kdasymptotically to a term in T'(n, o) of the form

pon~™ 8(o —1). (6)

Ou first suggestion in a preliminary publication (Domb 1975) was to combine (5)
a(f)inan attempt to represent the asymptotic behaviour of I'(n, o). However, even
3ausory glance at numerical data for finite n shows this to be unsatisfactory. We have
Bored hybrid droplets {figure 6(c)) which fill in the values of o between & and 1. New
gm“’fhyb{id droplet enter so extensively that they eliminate any trace of a maximum
o=6. This will be seen from figure 7 where we have plotted the distribution of weak
> ings g(n, 1 )/w(n) as a function of I/n for the face-centred cubic lattice with

ud7. Data are taken from the tables of Baker et al (1967), and

wm=2g(n, ) ™
§
te wumber of weak lattice constants of graphs with n pointst. (Weak lattice

Moy &e embeddings with no restrictions about nearest-neighbour occupation.)
th the data refer to weak rather than strong lattice constants, there are good

¥
"Rafor p 7 g ; .
Tn=7 are incomplete, but we believe that the general pattern represented is correct.
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qin,l)/win)

Figure 7. Distribution of weak lattice constants. The left-hand side corresponds to ramified
configurations and the right-hand side to compact configurations. (Histogram plots have
been transformed into a smooth curve.)

reasons for thinking that there is little difference in basic behaviour between the two
sets. This is because strong embeddings are equivalent to weak embeddings on a lattice
with no nearest-neighbour occupation; such a restriction increases the excluded volume
of an occupied site but does not basically change the problem, if we accept current ideas
on universality. Inany case, we shall transform to a weak embedding expansionin§ 6.

Fisher’s treatment is based on the idea that droplets with o <1 play a fundamental
role. At sufficiently low temperatures this should be correct, and we shall now discuss
his treatment in more detail.

5. Partition function for non-interacting droplets

If we ignore the volume exclusion of droplets, which should be reasonable at sutﬁcieqﬂ."
low temperatures where the densities are small, we can write down the partitior
function for the metastable system in the form

In Z(B.H)=Zl G(n Dy"z* (s=ng—-21). ®

Taking only compact droplets into account as in (5), Fisher (1967) wasled toa ‘mimic
partition function of the form

In Z(B,H)=Zynzn5ﬁn5n—cn". (9}
From this partition function he drew the following conclusions about the S
gularities of the system: (a) The power series in y always has radius of convergenc b
there is an essential singularity on the phase boundary (H = 0, y = 1) since all den*
tives of In Z converge at y =1. (b) When H=0 and y = 1 the power seri¢s I £ s
radius of convergence 2~ and this value corresponds to the critical temperatre ¢
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Critical exponents depend on two parameters ¢ and 7 which are related to the
) <l geometry of compact droplets. o N .

For the physicist who is unfamiliar.with essen_tlal smgulgmtxes and their ;?rope}-ties
ge should like t0 offer the following interpretation. Consider a power series with a

pasch point singularity
F(x)=Z x"/ng~(1—x)g'1 (g>2). (10)

Flz)and its first £ derivatives will be finite, where ¢ is the integral part of (g—1). As g
eomes very large we approach a situation in which nearly all derivatives are finite. In
the limit of g becoming infinite and n® being replaced by a"” (a>1) we obtain an

eential singularity.

There are a number of criticisms of the mimic partition function (9) as a description
o behaviour near the critical point. Gaunt and Baker (1970) pointed out that the
parttion function has a line of singularities on y = 1 above the critical temperature, and
infact the function itself and all its derivatives are now infinite. This result is clearly
iorrect since there are no singularities for 7> T,; one is therefore led to suspect the
wuclusions for T near T.. on the low temperature side. Also the terms in (9) do not
gtisactorily mimic the low density expansions which have been calculated for standard
ttices. For example, putting y = 1, all the terms of (9) are positive for all lattices,
whereas the actual term structure is very complex and lattice dependent. This aspect
Tesbeen discussed in more detail by Domb and Guttmann (1970).

In addition, the numerical values of & required to fit critical exponent values are
suprising. In both two and three dimensions the estimates are close to o, (in three
dmensions the estimate is below o, which is impossible geometrically as noted by
Fisher); however, the statistical data on two-dimensional droplets (Hiley and Sykes
191) would lead one to expect a value in the neighbourhood of 3.

Letus now take into account ramified droplets with o = 1 introduced in the previous
stion. Using formula (6) to estimate their number we obtain a contribution to
BZ(B, H) of the form

Ly z%uon"", (11)

Were & refers to the type of droplet which dominates asymptotically. The function
Tpresented by (11) behaves very differently from (9). The radius of convergence of the
Fenes is no longer y = 1, but instead

yc=(ﬂoza)—l (12)

?got“LSgTeater t_han 1 at sufficiently low temperatures. The singularity in the y series
2branch point of the type usually associated with critical behaviour, and it would

ISt0 expect a spinodal at y,.

w::elzgtlllllarities 'associate.d wit.h (9)'and (11) are shown' schematic:.«.llly in figure 8,
g e that én tl?xs app;oxmagoq Fisher was coyrect tq ignore ramified configura-
g onc ve ominant singularity 1n.the y series is provided by compact configura-
: imat er, from .the general dlscussmp given above we should expect the
. 1on of ignoring the volume exclusion of droplets to be valid only at low

ra
coatures. We shall therefore try to reformulate the problem so as to take these
0ns into account,
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Figure 8. Singularities in Fisher’s model (ignoring excluded volume). The full figg
represents essential singularities and the broken curve branch point singularities,

6. Mayer development for the Ising model

The Mayer formalism has been applied to the Ising model by a number of authors
including Fuchs (1942), Yvon (1945, 1948), Rushbrooke and Scoins (1955) and Domb
and Hiley (1962). (For areview see Domb 1974, chap 6.) The activity A correspondsto
yz*, and the activity expansion can be written in the form

mZ="S AE(z) (13)

r=1

where F,(z) is a polynomial in z. Corresponding to the connected graph expansionfora
continuum, we have a connected lattice constant expansion in which each contribution
to F,(z) is associated with an embedding of a connected graph on the lattice. We then
sum all contributions corresponding to a particular embedding, deriving an expansion
of the form

In Z=F Gi(n, DOy, 2). (4
Here i refers to a particular type of graph with r points and  lines, G;(n, ) isitsstrong
lattice constant, and ®Y(y, z) is a function which can be calculated from partition
functions of finite clusters.

To illustrate (14) we quote the functions @ﬁ),( y, z) for the first few connected graphs.
For n =1 the only graph consists of single point, , and

D, o(y, 2)=In(1+A)=A—3A2+30° . (A = yz9). (13
For n =2 the only graph consists of a single term with two points, e—s, and
@,,(y, 2)=In(14+24 +A%27H) =2 In(1+A) = A%z ¥ (1= 22 =24 + 2427 +0(%). (10

For n =3 there are two graphs /\, and Aand

®s5(y, 2)=In[1+3A +A%(1+227)+A%27*]-2In(1 + 24 +A2%z") +In(1+})
=227 11 -z3%(1-4A)+ O(A?)]

D35(y, 2) =In(1+31 +32%272+A%27%) =3 In(1+ 24 +A22 )+ 3 In(1+1)
=A% (1-32*+22:%-3A(1+ 22 =52 +32% + O(AD)].

{1

(18)
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functions are calculated by the finite cluster method which has been used
ively for a number of problems, and which is described in detail elsewhere (Domb

6,§2B3). )
i chep tact with the approximation (8) of the previous section we note that the

g con nwe note t

Tm;nearl; in @y, z) at sufficiently low temperatures is always A "z ">/, which is equal
py'z’ in view of (2). We can therefore write

mZ=Y Gin, Dy "z*¥y, 2) (19)

aere V) represents the effect of interactions and is 1 at suﬂic.iently low temperat}lres.
% should stress however that when interactions are taken into account there is no
ger any simple connection between the terms in (19) and the distribution of Flroplets
dgvensize and shape. The factor WYy, z) contains contributions corresponding to all

ible ways of making graphs with given (n, [) by overlapping graphs in pairs, tnple.ts,
wwithsmaller (n, [). It is possible to calculate the distribution of droplets of given size
udshape when interactions are taken into account. The calculations are very complex,
adwe do not feel that they have any direct association with critical behaviour. We
dull return to this point later.

Aswith all expansions in terms of lattice constants, it is possible to transform from
te strong to the weak system, and to write (19) in the form

InZ=Y g(n, Ny "z ¢5xy, 2). ' (20)

There are several advantages of this formulation. The weak lattice constants enter
utmally into high temperature expansions and are better known and tabulated; also it
spossible to calculate the drf,",),(y, z) powers of A from cluster integrals, as is shown in the
gpeadix. The values of ¢(y,z) corresponding to the graphs above are identical with
¥y, 2) for the first three and differ only for the triangle for which

¥35(y, 2)=(1-2%*(1-31)+ O(A?). @1

Wenow consider the evaluation of ¢y, z) in two limiting cases corresponding to
r=1and o = g,. For Cayley trees an exact evaluation is possible by the finite cluster
wthod; from it we deduce that

Uiy, 2) ~ [ (y, 2)" (22)
¥ere the particular ¥; denoted by x for convenience is given by
_1(1+0)-[(1-6)*+4622)"

8 (1+6)+[(1—6)>+462°]">
ve expand (23) a5 power series in  we find that
Yr =(1-2[1- 622 +0(8%)]. (24)

F °’ka %mpact configuration whose surface sites are small in number compared with
by sites, the method outlined in the appendix indicates that a relation of type (22)
valid, and ¥:(y, z) (denoted by i) can be expanded as a series

Ye=(1-23%q1 ~yz?+0(y*2%7%]. (25)

k
fmeor ) configuration with an asymptotically defined shape (22) is valid, and y;
3 valye lying between (24) and (25).

¥r (0=yz77?). (23)
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We shall now examine the consequences of the interaction on the distribution o
singularities in the limiting cases 0 =1 and & = 0%.

7. Effect of excluded volume on the singularities

We shall start from the weak lattice constant expansion (20), but we refer to the termg x
corresponding to compact or ramified configurations rather than droplets, Althougy
compact configurations correspond rather loosely to compact droplets and ramjig
configurations to ramified droplets, there is a direct correspondence only in the limit of
low density as mentioned above. :

We first discuss the properties of the ramified Cayley tree configurations for whig
(22)is valid, the appropriate § being given by (23). Instead of (11) we now have forthe
contribution of these configurations,

In Z (ramified) =¥ y"z¥ "Yhuin™™, 26

where the primes have been used to represent parameters corresponding to weak lattie
constants. The function of y defined by (26) will have branch point singularities at
values of y given by

yc(/’R(ycs Z) = (“62‘1’)—15 (27)

instead of (12).

The curve of singularities defined by (27) has been discussed in detail by Domb and
Guttmann (1970), who concluded that it is of the general form indicated in figure 9. The
factor ¢, lowers the curve of figure § so that it no longer crosses the axis and hence fits
the requirements of the Yang-Lee theorem (1952). However, to assess the detailed
behaviour in the neighbourhood of T, a more careful analysis of the contributions of
different ramified configurations is required, and this has not yet been carried out.

Coming now to compact configurations we have seen that (22) is valid; we do not
now have a closed form expression for ¢ but an expansion (25) valid at low
temperatures. Instead of (9) we have for the contribution of this type of configuration,

In Z (compact) =Y y" ez u'" " n~"" (o<1). 28)
H=0 A 5
// \\
’ \
//7; \\
/ \
/
/
7/
/

Figure 9. Singularities when excluded volume effects are taken into accuums: »~-
represents essential singularities and the broken curve branch point singularities-
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. that this of the same form as (9) with (y¥c) replacing y; hence the y series
" ales in an essential singularity at a point given by

yebc(ye 2)=1. (29)

ccanuse the expansion (25) to deduce that at sufficiently low temperatures the curve
ﬁ,}gu}aﬁties is given by
ye=(1-277"". (30)

«eems to us that the factor (30) will provide a dominant contribution to yic over

d that ¢ will behave in the same manner as g lowering the original

arve of figure 8 so that it now bends away from the axis. Hence we will obtain a curve

Fessential singularities of the form indicated in figure 9 which intersects the branch
ot aurve for ramified configurations at To.

tisvery desirable to check the above con jecture by detailed numerical calculations.
T alternative approaches are being pursued; exact calculations of ¢ for small
compact clusters of a given shape from which an asymptotic assessment may be possible
Binder and Guttmann, unpublished); and an extension of the series expansion (25) by
fie method outlined in the appendix.

The two curves shown in figure 9 represent the extreme limits of compactness and
amification. It seems reasonable to assume that other intermediate types of configura-
tion will give rise to singularity curves lying between these limits.

We must emphasize again that in the above treatment, as in the Fisher treatment,
tiesingularities refer only to the metastable phase. In equilibrium where no configura-
fons are suppressed, singularities corresponding to a first-order transition would occur
w the phase boundary. '

Batit
fewhole range, an

8 Condusions

Ouw first conclusion supports the Gibbs view that when T>0 there is an analytic
atension beyond the phase boundary giving rise to a metastable phase. We have
tentioned that Fisher’s treatment, which ignores volume exclusion, should provide a
ﬂjﬂsongble approximation at sufficiently low temperatures. Our picture is consistent
Wﬂhthl§ result since the analytic extension is short when T is small. However, Fisher’s
“nclusion, that the singularity in the activity series coincides with the phase boundary,
;ﬂugnoéously correct‘only wher} T= 0. We have defined a new temperature T, which can
s r:rs;?h()d physically as arising from the competition between compact and ramified
domina;e ate forrr'ler are energetically favoured but have little entropy and therefore
gy bmhsuﬂimgntly low temperatures. The latter do not make economic use of
2 be ooy alve large.entrOpy, and are therefore favoured at higher temperatures. T
et ely described as t}}e temperature of crossover from the dominance of

Pact clusters to that of ramified clusters.
Nintedeg::, T9 the pl?ase tern.lina.tes in an essential singularity. As Fisher (1967) has
el B, smgular‘lty of this kind would t?e extremely difficult to identify experi-
Wbl s 3; epr(;v;ntmg clusters from growing beyogd a specific size it should be

Wcleation tt? the phase beyqnd the singularity, and in this region the standard ideas

o o Teo}? can be applied (Domb'1973).'
: lir 103 i o bowever, the phase terminates in a spinodal which is a singularity
fitical point, and should be clearly accessible to experimental observation.
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There is good experimental evidence for the existence of spinodals (eg Chu et g 1969

In Fisher’s picture they are non-thermodynamic (and are therefore descripeg m'
‘pseudo-spinodals’) whereas in our picture they represent the termination of the
metastable thermodynamic phase. In a numerical analysis of low-temperature Series
for the Ising model, Gaunt and Baker (1970) were able to locate a spinodal curve pey
T. and estimate its critical behaviour. Their evidence is clearly consistent with our
analysis. However, a Monte-Carlo investigation (Binder and Miiller-Krumbhaar 1974)
failed to reveal a spinodal at the point predicted by Baker and Gaunt. The situation j
therefore somewhat confused, and further investigations using series and Monte-Car
methods would be welcome.

When excluded volume effects are significant we have found it convenient to foeg
attention on lattice configurations rather than on droplets or clusters, and we find thy
critical behaviour is determined by ramified configurations, since compact configura-
tions are dampened out. This fits in with the analysis of Domb and Guttmann (1979)
who found that the complexities of behaviour of low-temperature series for differep;
lattices, which give rise to individual patterns of non-physical singularities, could
reasonably be explained by taking account of Cayley tree configurations alone. It alo
enables one to understand why critical exponents are symmetric above and below T,
since the high-temperature exponents are determined by series which are dominated by
ramified configurations of various types (Domb 1972). Scaling theory then indicates
that one should pass to low temperatures with the same configurations re-organizedina
different manner.

Since a key characteristic of Curie point behaviour is long-range correlation, the
suggestion that only ramified configurations play a part in its neighbourhood makes
reasonable sense physically. These configurations extend over a much larger area than
compact configurations, and if one wishes to ‘communicate’ over a long range itis
inefficient to use compact configurations.

However, in the neighbourhood of T, our treatment is not sufficiently refined to
provide a detailed description of critical exponents and critical behaviour. In particular,
no significance should be attached to the portion of the curve of singularities in figure
which extends to temperatures above T,. The behaviour of the curve of singularities &t
T. needs more careful attention.

We feel it important to distinguish between Curie point critical behaviour and
percolation critical behaviour. The latter arise even in random mixtures with no energy
of interaction, and will therefore be present in the Ising model even at infiite
temperatures. The clusters which give rise to percolation are geometrical clusters.
whilst those which give rise to Curie point behaviour are physical clusters in which the
surface tension plays a major role. Therefore, whilst the statistical distribution'oi
cluster size is immediately relevant to percolation critical exponents, we do not think
that it has any direct connection with Curie point critical exponents.

The occurrence of percolation in Ising systems has been the subject of recent study
(Miiller-Krumbhaar 1974, Coniglio 1975) and it has been suggested that it three
dimensions, since infinite clusters can occur at temperatures well below T, these migit
exercise an important influence on the physical behaviour of the Ising model. We
not feel this to be the case, since the occurrence of infinite clusters below Tc52
lattice-dependent property and does not arise, for example, in the hydrogen per wilk
lattice with coordination number 3. According to current ideas of universalify
behaviour of the ferromagnetic Ising model should not depend in any fundamen
on lattice structure.
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We must finally discuss the general theorem of Lanford and Ruelle ( 1?69) which
1o all systems with short-range forces. These authors showed that if the stable
o ynamic state is not analytic at a given point (as is the case in a ﬁrst-orfier phase
«ion) then the assumption of analyticity in the mulitiple corre{atpn fpnctlons leads
five probabilities in at least one of them. If the latyexj pOSSlblh.ty is excluded on

sl grounds, then at least one of the multiple correlation functions must have a
?pml‘ _ This theorem has been interpreted as excluding the possibility of meta-
+ states in the strict thermodynamic sense for systems with _short-range forces.
¢, the theorem does not necessarily conflict with the conclusno_ns we have @raw_n

ge. The relationship between the theorem and our own work mlght be clapﬁed if
gonfgurational treatment were extended to the study of correlatlc?n functions. It
gidaso help if more light were shed on the nature of the state to which the t.heo-rem
gles,and whether the definition of metastability used in § 3 precludes its application.
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igendix. Cluster integral calculation of interaction functions

fralattioe gas the function f;;, which occurs in the Mayer cluster integrals, reduces to a
wisof S-functions. A cluster integral then reduces to a cluster sum,

1
;'!Zfiifik- - fus (31)

®rthe vertices i, j, k... [ of a connected graph. The function f; has the following

=—1 (32)
¥3iand f are situated on the same lattice point;
fi=f=2z72-1 (33)

m‘aﬂd'] are nearest neighbours on the lattice; f; is zero elsewhere. In case (32) we
: be the interaction as a pin, and in the latter case as a link, following
Werley (1959).
1 dgraph Wit.h I edges the sum (31) consists of 2' different terms corresponding to
m{ le ombinations of pins and links, and each term can be related to one
€ In the lattice. (The method can be applied when all the interactions
iding to different lattice bonds are different; in many respects it is convenient
“a;"gl this general case, and subsequently make all the interactions equal.) We
iy 'eterms of. all 'Ehe different cluster sums which are related to one particular
%& those which give rise to a function ¢ ’(y, z) for the embedding which can be
from finite cluster partition functions as illustrated in (15), (16), (17) and (21)
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for the simplest embeddings (@9y, 2) =y 25y, 2 )_)- When we sum over al| embeg.
dings we obtain an expansion analogous to (14) but involving weak lattice Constagy

gi(n 1) (cf (2)),
InZ=Y gn, DXy, 2)- (34)

Let us focus attention on one particular embedding whose vertices are [attice pointy
which we denote by Greek letters a, B.. . . . We can expand Bras @ power series ink
whose coefficients are polynomials in f. The lowest term is of order A", and arises wheq
i,j...k coincide in some re-arrangement with &, 8. .. ¥, and all the interactions are
links. The 1/n! factor in (31) then disappears because of the ‘n! possible re.
arrangements of i, j . . . k, and this term can then be evaluated as A"f".

Foratermin A™"" two of the vertices i, f. . . k must coincide with one of (a, ...,
Starting with our original A" configuration, we must enumerate all possible ways of
introducing one additional vertex. There are two aiternative possibilities, (a) select one
of (a, B...v), introduce a new vertex coincident with it and connect the new vertextg
(a,B...7v) by pins or links, (b) decompose one of the old vertices into two parts, and
connect other vertices by pins or links. The different interaction graphs arising from
these alternatives are illustrated diagrammatically in figure 10 for a compact embeg-
ding, where links are denoted by solid and pins by dashed lines. The permutation factor
cancels again, and for compact lattice constants all graphs of type (b) group togetherin
pairs with equal and opposite signs; we therefore obtain a total contribution ~nA™*'f.

Foratermin A™*? two new vertices must be introduced and connected in all possible
ways among themselves and to (a, B.. . . y) by pinsor links. The problem becomes more
complicated and we shall not list all the possible new diagrams. Itis easy to see that their
total number is of order n?, and that the total number for r new vertices is of order n".
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Figure 10. Examples of interaction diagrams arising from the insertion 0
{a) addition of a vertex P* at P; (b) decomposition of vertex P into P’ and
represent links and broken lines represent pins. The pairs B, B'; C, C'; D, D
F have opposite signs and cancel.
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this we conclude that equation (22) is valid for a compact cluster, with ¢.(y, z)

'It Zy@ul as an illustration of the method outlined above to reproduce the

qaasions for simple clusters given in (16), (17) and 21).
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