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C Domb 
Wheatstone Physics Laboratory, King’s College, Strand, London WC2R 2LS, UK 
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Abstract. The droplet model of condensation as developed by Fisher is modified to take 
account of: (a )  ramified clusters whose surface/volume ratio tends to a finite limit as the 
number n of constituent molecules becomes large; ( b )  the excluded volume interactions 
between clusters. It is found that the interactions change the position of the first singularity 
in the activity series so that it no longer coincides with the phase boundary but is located 
beyond it. A thermodynamic metastable state can then be defined as in the classical Gibbs 
picture. At sufficiently low temperatures compact clusters (ie those in which the 
surface/volume ratio tends to zero for large n) dominate and give rise to an essential 
singularity. Near the critical temperature-ramified clusters dominate and give rise to a 
spinodal line with a branch point singularity. Critical behaviour can be explained in terms of 
ramified clusters alone. 

hg the 1930s two independent approaches were pursued for the problem of the 
3ademtion of a classical gas of molecules with short-range repulsive forces and 
&-range attractive forces. The cluster integral theory developed by Mayer (and 
h)following initial steps taken by Ursell, succeeded in obtaining formally a power 
hexpansion for the free energy. When the expansion variable is the absolute 
mvrtY, the coefficients are multiple integrals of the intermolecular potential termed 

integrals’; when the expansion variable is the density, the coefficients are 
‘irreducible cluster integrals’ and are simply and directly related to the virial 

Pffidents of the condensing gas. The formalism can be developed elegantly using the 
ybofgraph  theory (for a general review see Uhlenbeck and Ford 1962, Domb 

&re were high hopes in the 1940s and early 1950s that this development would 
‘hadetailed description of the liquid-vapour phase transition, and the phenomena 
%a with the critical point. However, it became clear that the problem of 
&Uhe behaviour of higher-order cluster integrals presented formidable difficul- 
‘and little progress was made either theoretically or numerically. 
Aquation discussed at some length in the earlier literature is the radii of 

%gene ofthe two power series, and their physical significance. It was first assumed 
‘ ke  radii of convergence would correspond to the phase boundary, and that the 
‘“eS&t a h  contain a potential description of the liquid phase. The rigorous 

flcdla, 1, P 3) .  
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284 C Domb 

treatment by Yang and Lee (1952) of a lattice gas provided strong evidence that thiswa, 
not the w e ,  and that to explain the equilibrium between the two phases, a secwd 
fundon must be defined which started from the liquid side (see e.g. Yang 1 9 7 2 ) . ~  
alternative interpretation was then put forward that the radii of convergence 
represent the limit of stability of the condensing gas, which, in accordance 
classical ideas of Gibbs, was taken to be beyond the equilibrium condensation 

Subsequent detailed analysis of the lattice-gas model (Gaunt and Domb 1979 has 
shown that the density expansion is complex, and that its radius Of Convergence doesnot 
correspond to a physical singularity. The nature of this expansion changes from lattice 
to lattice, and the series is not suitable for asymptotic assessment. However, the activity 
series settled down to a regular pattern of behaviour which can be related to thecritjd 
point and its properties. 

In parallel with the above development, a non-rigorous but empirical approad to 
the problem was initiated by Becker and Doring (1935) which considered thegrowtfiof 
individual droplets and applied the methods of chemical kinetics to estimate their 
growth. This approach was further explored by Bijl (1938), Frenkel (1939a,b) 4 
Band (1939a, b), and Frenkel’s treatment forms the basis of modern nucleation t h e q  
(Zettlemoyer 1969). Each droplet is treated as a sphere whose free energy dependson 
its surface and volume and is therefore determined by its radius. No attempt is made to 
take account of interactions between droplets, and the possibility of different sizesand 
shapes of droplet are regarded as of secondary importance. In nucleation theory these 
assumptions are reasonable. 

In fact, as indicated above, the cluster integral treatment makes no such assumptiom 
and treats the problem correctly and exactly. However, Frenkel (1939a) arguedwitb 
some cogency that the theory ‘because of its mathematical intricacy will hardly appeal 
to the experimental physicist or chemist’. 

The droplet approach was taken up in a preliminary way by Essam and Fisher 
(1963), and in more detail by Fisher (1967). By using the results of Ising model 
enumerations, Fisher was able to take account of the different sizes and shapesd 
droplet, and to conjecture a formula for the entropy of droplets in relation to their 
surface area. He then constructed a mimic partition function from which he drew8 
number of conclusions. Among them are: (a )  the radius of convergence of the advity 
series is identical with the phase boundary. below the critical temperature; (b )  
activity series terminates in an essential singularity; ( c )  no metastable extension of& 
gaseous phase beyond the phase boundary exists in the true thermodynamic sew. 

Fisher’s treatment is unsatisfactory in two important respects; it ignores the efiedaf 
a wide class of droplets, and it fails to take the interaction between droplets into 
account. Attempts have been made tc modify the treatment to remedy these 
Reatto 1970, Reatto and Rastelli 1972, Stauffer et al 1971), but we feel that bey are 
empirical in character and do not get to the heart of the problem. In the present Paper* 
therefore, we return to the Mayer treatment in its application to the Ising or laha-? 
problem. We find that we can modify Fisher’s treatment so as to include an ‘intera*On 

an extensive class of ‘ramified’ droplets which were not considered by Fisher. In 
particular cases the interaction function can be calculated exactly, and more generally, 
series expansions can be developed from which its behaviour can be estimated- Fm 
this treatment we are led to conclusions, some of which differ substantially from thosed 
Fisher; and in the neighbourhood of the critical point we find that ramified droP1ets$ay 
a dominant role. 

function’ to take account of the volume exclusion of droplets. We also take amun toi . 
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t.* description of phase equilibrium 

the essential features of the classical theory of phase equilibrium as ?s by van der Waals equation and amplified by Gibbs. Figure 1 shows the 
form of isothermal below the critical temperature T,. The stable equilibrium 

I 
V 

Fw 1. Stable and metastable states in the van der Waals picture. Points C and E are 
spinodals and represent the limits of stability of the liquid and gaseous phases. Full curve, 
stable; broken curve, metastable; dotted curve, unstable. 

~ ~ ~ e s p o n d s  to A B D F G, where the horizontal line B D F is drawn SO as to make 
B CD and D E F equal. However, if the vapour phase is suppressed, the 

lipjphase A B can be continued as a metastable extension as far as C where (dp/d V)T 
h m e s  zero. No extension is possible beyond C since the phase becomes ther- 
slodynamically unstable. Likewise, if the liquid phase is suppressed, the vapour Phase 
an be continued as a metastable extension as far as E where it ceases to be stable. 
F'aintsCand E trace out 'spinodal lines', and the phenomenon of spinodal decomposi- 
h k o f  great importance in the kinetics of phase growth (Cahn 1971). 

The magnetic analogue of the above is illustrated in figure 2, where the magnetic 
H corresponds to the pressure, and the magnetization to the density (N/V).  

hver ,  there is a great simplification in the magnetic system because of the symmetry 
m Wd to reversal of magnetic field. We shall therefore concentrate on the magnetic 
Poblem since it is widely felt that the patterns of behaviour for fluids and magnets are 
qsimilar (see eg Vicentini-Missoni 1972). 

It is instructive to look at the above picture in terms of free energy. Figure 3 
qwnts the Helmholtz free energy as a function of magnetization. The stable phase 

to the 'two-tangent' line B F, and the spinodal lines to points of inflection. 
my&Ure 4 presents the more usual picture of the Gibbs free energy as a function of 
*nke, where the metastable extensions correspond to supercooled and 
SPPerheatedPhases. It should be noted that the two phases are represented by separa$e 
tnalyttchnaions, and there is no singularity in either phase at the point of stable 
?@'nU.In this picture the spinodal lines correspond to points of infinite curvature 

The above classical picture has been shown to follow rigorously from statistical 
.wm@formodels with very long-range forces, ie of the form AJ exp (-AR) where A 

to tend to zero (Hemmer and Lebowitz 1975). The basic physical problem is 

(G, P )  plane. 
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M 
I 

F i i  2. Stable and metastable states in the classical picture of a ferromagnet. PohtrCd 
E are spinodals and represent the limits of stability of spin-up and spin-down phases. Fol] 
curve, stable; broken w e ,  metastable; dotted curve, unstable. 

Fignre 3. Helmholtz free energy of a classical ferromagnet (or fluid). Points ofinfledC 
and E are spinodals which represent the limits of stability of the phases. Full m’ve,mbk; 
broken curve, metastable; dotted curve, unstable. 

to find how this picture is modified when realistic short-range forces are substitutedf*‘ 
the long-range forces; these introduce surface effects which play a major role 
determining the growth and interaction of finite clusters. 

3. Metastable states in the bing mae l  

Consider an Ising model of N spins with nearest-neighbour interactions in a largZ 
d magnetic field H at a given temperature T. If the field is sufficiently large the 
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T< \ \ \ 

F i  4. Gibbs free energy of a classical fluid (or ferromagnet). The two phases correspond 
to two different analytic branches and there is no singularity in either at their intersection. 
Full curve, stable; broken curve, metastable. A, phase I; B, phase I, superheated; C, phase 
11; D, phase 11, superheated. 

dbeupin the direction of the field. We now gradually reduce the field H, allowing 
spirs to overturn in accordance with Boltzmann’s relation. However, to obtain a 
atastable state we must suppress the second phase, which consists of all the spins 
ahgned in a direction opposite to the field and states derived from it, by overturning a 
hitenumber of spins. As long as H > 0 such states are excluded when N is large by the 
fbh”factor, which is of order exp(-NpmH) (where m is the magnetic moment of 
aspin). However, when HsO these states are of major importance in determining 
thermodynamic equilibrium, and our system is metastable. 

Any excited state can now be characterized as a series of groups of overturned spins 
connected together as ‘droplets’ (figure 5). All sizes and shapes of droplet are possible, 
and there is an interaction between droplets arising from their finite size (excluded 
“e interaction). Each individual droplet, consisting of II connected overturned 
SPimmls broken bonds, has a Boltzmann factor ynzS where 

aadJisthe energy of interaction of a pair of parallel spins. To ensure that the system 
Y =exp(-2PmH), z = exp(-2@J) (1) 

E . - 
Fk3W 5. Interacting droplets in the king model. 
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remains metastable we must further restrict any droplet from growing to a S& oforde, 
N (Penrose and Lebowitz 1975, unpublished). 

In the lattice gas interpretation, each overturned spin corresponds to a particle, 
the original spins correspond to holes. 

Each droplet corresponds to an embedding of a connected gaph  of n vertices and, 
Iines on the lattice, where the surface area of the droplet is defined by 

s=nq-21  (2) 
and q is the coordination number of the lattice. The number Of embeddings o f t h e m  
on the lattice is usually referred to as the strong lattice constant of the graph (see eg 
Domb 1974). The term strong is used to describe embeddings in which all ~ ~ j d  
sites which are nearest neighbours are connected by a bond of the graph. We 
denote the total number of strong embeddings of all connected graphs with a given ,, 
and I by G(n, I) ,  and this represents the total number of droplets of n spins with a g i v a  
surface area s; it also defines the entropy of droplets with this surface area. 

4. Specification of dropleb 

Following Fisher (1967), we now classify droplets according to their shape. For agiven 
n there is a minimum possible value of s, say so, corresponding to the most comw 
embedding, and a maximum value s1 ( = nq - 2n + 2)  corresponding to the embedding 
of Cayley tree configurations. As n becomes large so corresponds to a sphere in three 
dimensions, or a circle in two dimensions. Fisher found it convenient to introduce a 
parameter (T to specify the shape, where 

s = Anu, ( U o S U S l ) .  (3) 

The constant A is a numerical factor of order unity, taking account, for example,oW 
difference between cubical or spherical droplets which have the same value of U ;  the 
formula applies asymptotically for large n. u0 corresponds to the most c o m p  
embedding, and is equal to in three dimensions and 4 in two dimensions, u = l  
corresponds to ‘ramified’ embeddings whose surface is proportional to their bulk. 

It is possible to specify A precisely only for configurations of a particular shape. 
Since new shapes enter continually as n increases, it is better for some purposes todrop 
the constant A, and U can then be uniquely defined for any configuration. ’k 
distribution G(n,  I )  can be derived numerically for finite n and the change tog 
represents a convenient change of scale. Our main interest is in the asymptotic 
behaviour of G(n,  l )  for large n, and we shall assume that it approaches a continuous 
distribution r(n, U )  do, where 

Fisher confined his attention to droplets with a0< 1 which we shall call C O W ’  
(figure 6(a)). This is the type of droplet envisaged in the earlier theories withour 
internal holes. However, he took an important step forward in estimating theenwPY 
of such droplets as a function of s. In two dimensions the ‘surface’ of each dropietaa 
self-avoiding polygon whose length is approximately proportional to s. It has wowen 
established by numerical studies that the number of such polygons u(s) is %V@” 
ally of the form (see eg Domb 1969) 

U S  1. 

u(s) - ps/s: (4) 
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[C I \ 

Figme 6. Different types of droplet: (a )  compact, U< 1; (b)  ramified, U =  1; (c) hybrid. 

Haep is a numerial constant characteristic of the lattice, and T is an exponent which 
qrpears to be universal (ie independent of lattice structure) in a given dimension. 

Fr;her assumed that a formula of type (4) is valid quite generally for droplets of any 
any dimension, and this suggestion seems very plausible. He further 

;sarmedthatfor large s one particular value of U, say 6, would dominate asymptotically 
mdo&efi. This is again supported by numerical studies on self-avoiding polygons 
imhensions (Hiley and Sykes 1961), the appropriate value of a then being 3. 
We amption means that for compact droplets the distribution I-( n, U )  approaches 
b fom 

a 

r(n, (T) - pn“n-= S(U - 5). ( 5 )  

We now take account of droplets with cr = 1 which were not considered by Fisher. 
We Wcali these ramified; they include self-avoiding walks and polygons, and Cayley 
&witha finite number of nodes, and are therefore very extensive; a typical ramified 
dmpletisdepicted in figure 6(b) .  It is clear that they are extensive in number, and must 
&asymptotically to a term in T(n, U )  of the form 

p:n-To 6(0-  1). (6) 
h f m t  suggestion in a preliminary publication (Domb 1975) was to combine (5 )  

8d(6ibanattempt torepresent the asymptotic behaviour of T(n, U).  However, even 
‘[msaryglance at numerical data for finite n shows this to be unsatisfactory. We have 
mbbriddroplets (figure 6(c ) )  which fill in the values of U between 6 and 1. New 
MOfhybrid droplet enter so extensively that they eliminate any trace of a maximum 

%iswill be seen from figure 7 where we have plotted the distribution of weak 
wdinpS g(n, l ) / w ( n )  as a function of l /n for the face-centred cubic lattice with 
“6and7. Data are taken from the tables of Baker et al (1967), and 

w b )  =c 1 gh, I )  (7) 

6thebbinumber of weak lattice constants of graphs with n points?. (Weak lattice 
@%ts are embeddings with no restrictions about nearest-neighbour occupation.) 
b& the data refer to weak rather than strong lattice constants, there are good 

’TLaaraforn=7 are incomplete, but we believe that the general pattern represented is correct. 
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F-7. Distribution of weak lattice constants. The left-hand side corresponds to" 
configurations and the right-hand side to compact configurations. (Histogram plots& 
been transformed into a smooth curve.) 

reasons for thinking that there is little difference in basic behaviour between the two 
sets. This is because strong embeddings are equivalent to weak embeddings on alartict 
with no nearest-neighbour occupation; such a restriction increases the excludedvolume 
of an occupied site but does not basically change the problem, if we accept current ideas 
on universality. In any case, we shall transform to a weak embedding expansion in 8 6. 

Fisher's treatment is based on the idea that droplets with U < 1 play a fundamental 
role. At sufficiently low temperatures this should be correct, and we shall now discuss 
his treatment in more detail. 

5. Partition function for non-interacting droplets 

If we ignore the volume exclusion of droplets, which should be reasonable at suficiend!' 
low temperatures where the densities are small, we can write down the patition 
function for the metastable system in the form 

Taking only compact droplets into account as in (3, Fisher (1967) was led to a 'midc' 
partition function of the form 

From this partition function he drew the following conclusions about the 'IR- 
guiarities of the system: ( a )  The power series in y always has radius of convergen? 
there is an essential singularity on the phase boundary ( H =  0, y = 1) since all 
tives of in z converge at y = 1. (b)  When H =  0 and = 1 the power series in 2 h' 
radius Of convergence b-' and this value corresponds to the critical temperaNe Tc 
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(,)Gtical exponents depend on two parameters 5 and f which are related to the 

For the physicist who is unfamiliar with essential singularities and their properties 
gshodd like to offer the following interpretation. Consider a power series with a 

eometq of compact droplets. c&lidg 

pint singularity 

F(.x)=Cxn/ng-(l-x)g-l ( g  ' 2). (10) 

filland its first t derivatives will be finite, where t is the integral part of (g - 1). As g 
w6ve'y large we approach a situation in which nearly all derivatives are finite. In 

limit of g becoming infinite and ng being replaced by uno (a > 1) we obtain an 
epential singularity. 

There are a number of criticisms of the mimic partition function (9) as a description 
of behaviour near the critical point. Gaunt and Baker (1970) pointed out that the 
pjboqfunction has a line of singularities on y = 1 above the critical temperature, and 
hiadthe function itself and all its derivatives are now infinite. This result is clearly 
bmctsince there are no singularities for T> T,; one is therefore led to suspect the 
dusions for T near T, on the low temperature side. Also the terms in (9) do not 
gtisfactorily mimic the low density expansions which have been calculated for standard 
lattices. For example, putting y = 1, all the terms of (9) are positive for all lattices, 
phereas the actual term structure is very complex and lattice dependent. This aspect 
hasbeen discussed in more detail by Domb and Guttmann (1970). 

Io addition, the numerical values of 5 required to fit critical exponent values are 
anprising In both two and three dimensions the estimates are close to a. (in three 
dimsions the estimate is below a. which is impossible geometrically as noted by 
Faher); however, the statistical data on two-dimensional droplets (Hiley and Sykes 
1%1) would lead one to expect a value in the neighbourhood of 3. 

Let usnow take into account ramified droplets with (T = 1 introduced in the previous 
%'Ikm. Using formula (6) to estimate their number we obtain a contribution to 
hz@,ti) of the form 

ahere Ci refers to the type of droplet which dominates asymptotically. The function 
Presented by (11) behaves very differently from (9). The radius of convergence of the 
Wks is no longer y = 1, but instead 

Yc= ( P o Z d r 1  (12) 

andthisisgreater than 1 at sufficiently low temperatures. The singularity in the y series 
smwabranch point of the type usually associated with critical behaviour, and it would 
iead us expect a spinodal at y,. 

IhesinDlarities associated with (9) and (11) are shown schematically in figure 8, 
i"d we.ee that in this approximation Fisher was correct to ignore ramified configura- 
b"ns3 'In@ the dominant singularity in the y series is provided by compact configura- 
b. However, from the general discussion given above we should expect the 
*'ximation of ignoring the volume exclusion of droplets to be valid only at IOW 
I$lper;flures. we shall therefore try to reformulate the problem SO as to take these 

into account. 
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F v  8. Singularities in Fisher’s model (ignoring excluded volume). The full 
represents essential singularities and the broken curve branch point singularit& 

6. Mayer development for the king model 

The Mayer formalism has been applied to the Ising model by a number of authofi 
including Fuchs (1942), Yvon (1945,1948), Rushbrooke and §coins (1955) and Dmb 
and Hiley (1962). (For a review see Domb 1974, chap 6.) The activity A correspondsw 
yz4, and the activity expansion can be written in the form 

Q 

lnZ= 1 A‘F,(z) 
r = I  

where F,(z) isa polynomial in z. Corresponding to the connected graph expansionfora 
continuum, we have a connected luttice constant expansion in which each contribution 
to F,(z) is associated with an embedding of a connected graph on the lattice. Wetben 
sum all contributions corresponding to a particular embedding, deriving an expansion 
of the form 

In 2 = 1 Gi(n, l)@$(y, z). 
i.n 

Here i refers to a particular type of graph with n points and 1 lines, Gi(n, I )  is its Strong 
lattice constant, and @!,iy, z) is a function which can be calculated from partition 
functions of finite clusters. 

To illustrate (14) we quote the functions @!,),(y, z) for the first few connected Papb. 
For n = 1 the only graph consists of single point, 0 ,  and 

Ql.,,(y, z) = ln(1 + A )  = A - iAZ+;A3. .  . (A = yz“). (If 
For n = 2 the only graph consists of a single term with two points, e-., and 

%2.1(y, z )  = ln(1 +2A +AZz-’)-2 In(1 + A )  = A2z-’( 1 -z2-2A + 2Az2+O(A2)). 

For n = 3 there are WO graphs A, and A, and 

@3.&’, 2) =h[l+3A + A z (  1 +2~-’)  + A ’ z - ~ ] - ~  141 +2A +A2z-’) +Id1 + A )  

= h 3 Y 4 [ (  1 -z’)’( 1 - 4A) + O(A2)] (171 

(18) 
%dy, z )  = ln(l+3A +3AZz-’ + A 3 ~ - 6 )  -3 ln(1 + 2A +A2z-‘) + 3 ln(1 + A )  

= A3Z-6[(1 -3z4 + 2z6) - 3A (1 + z2  - 5z4 + 3z6) + O(A2)]. 
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fundons are calculated by the finite cluster method which has been used w M l y f o r a  number of problems, and which is described in detail elsewhere (Domb 
1974, chap 6,8 2 B3). 

T o m ~ e ~ n t a c t  with the approximation (8) of the previous section we note that the 
term in @E),(y, z) at sufficiently low temperatures is always A "z-", which is equal 

1Bgesl in view of (2). We can therefore write 

*@$represents the effect of interactions and is 1 at sufficiently low temperatures. 
l'eshodd stress however that when interactions are taken into account there is no 
wmysimple connection between the terms in (19) and the distribution of droplets 
d@n&eand shape. The factor V$(y, z )  contains contributions corresponding to all 
p i e  ways of making graphs with given (n, I )  by overlapping graphs in pairs, triplets, 
&&smaller (n, I). It is possible to calculate the distribution of droplets of given size 
d&ape when interactions are taken into account. The calculations are very complex, 
d we do not feel that they have any direct association with critical behaviour. We 
~ r e t u m  to this point later. 
As with all expansions in terms of lattice constants, it is possible to transform from 

kstrong to the weak system, and to write (19) in the form 

There are several advantages of this formulation. The weak lattice constants enter 
llahnallyinto high temperature expansions and are better known and tabulated; also it 
k p i l e  to calculate the $!,xy, z) powers of A from cluster integrals, as is shown in the 
~ppendix. The values of $:,Xy,z) corresponding to the graphs above are identical with 
fay, t )  for the fist three and differ only for the triangle for which 

$3,3(y, Z) = (1 - ~ ~ ) ~ ( 1 -  3 ~ )  + o(h2). (21) 
Wenow consider the evaluation of $:,\(y, z )  in two limiting cases corresponding to 

~1 and U= CO. For Cayley trees an exact evaluation is possible by the finite cluster 
@w; from it we deduce that 

$!$Y, z)-[$ii(y, 211" 

the particular $i denoted by $R for convenience is given by 

URexpand (23) as a power series in 0 we find that 

F O T a c q "  configuration whose surface sites are small in number compared with 
!b!ksiteS, the method outlined in the appendix indicates that a relation of type (22) 

and t,hi(y, z) (denoted by &) can be expanded as a series 

$c=( i -~2 )9 /2 [1  - - Y Z ~ + O ( ~ ~ Z ~ ~ - ~ ) ] .  (25) 
Lfaqfor9'~nfiguration with an asymptotically defined shape (22) is valid, and qi 
''e a value lying between (24) and (25). 
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We shall now examine the consequences of the interaction on the d&butCon ot 
singularities in the limiting cases U = 1 and U = UO. 

7. Effeet of exdoded volume on the smgularities 

we shall start from the weak lattice constant expansion (201, but we refer to the termsas 
corresponding to compact or ramified configurations rather than droplets.  AI^ 
compact configurations correspond rather loosely to compact droplets and ramified 
configurations to ramified droplets, there is a direct correspondence only in the limitof 
low density as mentioned above. 

We first discuss the properties of the ramified Cayley tree configurations for 
(22) isvalid, the appropriate $R being given by (23). Instead of (1 1) we now havefork 
contribution of these configurations, 

U& 

In 2 (ramified) =C yKzb'"$~p"n-'', (tat 
where the primes have been used to represent parameters corresponding to weak la& 
constants. The function of y defined by (26) will have branch point singularitiesat 
values of y given by 

Yc$R(yc, 2) = (pbZa')-', (27) 
instead of (12). 

The curve of singularities defined by (27) has been discussed in detail by Domband 
Guttmann (1970), who concluded that it is of the general form indicated in figure 9. 'Ibe 
factor $R lowers the curve of figure 8 so that it no longer crosses the axis and hence& 
the requirements of the Yang-Lee theorem (1952). However, to assess the detailed 
behaviour in the neighbourhood of Tc, a more careful analysis of the contributionsof 
different ramified configurations is required, and this has not yet been camed out. 

Coming now to compact configurations we have seen that (22) is valid; we do not 
now have a closed form expression for Jlc but an expansion (25 )  valid at IOW 
temperatures. Instead of (9) we have for the contribution of this type of configuration, 

I 

I 
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&at this of the same form as (9) with ( Y + ~ )  replacing y ; hence the y series w@ &sin  an essential singularity at a point given by 

geethe expansion (25) to deduce that at sufficiently low temperatures the curve 
ddgities is given by 

y ,J lc (Yc ,  2 )  = 1 * (29) 

(30) 2 --4/2 y , = ( l - 2 )  . 
Maseems to US that the factor (30) will provide a dominant contribution to +c over 
bdolerange, and that a,kC will behave in the same manner as $R lowering the original 
@offigure 8 so that it now bends away from the axis. Hence we will obtain a curve 
dssential singularities of the form indicated in figure 9 which intersects the branch 
pointme for ramified configurations at To. 

Itkverydesirable to check the above conjecture by detailed numerical calculations. 
TWO &native approaches are being pursued; exact calculations of $:,; €or small 
“pactclusters of a given shape from which an asymptotic assessment may be possible 
@&rand Guttmann, unpublished); and an extension of the series expansion (25) by 
&method outlined in the appendix. 

l i e  two curves shown in figure 9 represent the extreme limits of compactness and 
mifmtion. It seems reasonable to assume that other intermediate types of configura- 
tionwill give rise to singularity curves lying between these limits. 

We must emphasize again that in the above treatment, as in the Fisher treatment, 
ksingularities refer only to the metastable phase. In equilibrium where no configura- 
h a r e  suppressed, singularities corresponding to a first-order transition would occur 
catbe phase boundary. 

hfirst conclusion supports the Gibbs view that when T>O there is an analytic 
a m i o n  beyond the phase boundary giving rise to a metastable phase. We have 
mentioned that Fisher’s treatment, which ignores volume exclusion, should provide a 
“able approximation at Sufficiently low temperatures. Our picture is consistent 
athis result since the analytic extension is short when Tis  small. However, Fisher’s 
foaclusion, that the singularity in the activity series coincides with the phase boundary, 
6“gorO~ly correct only when T = 0. We have defined a new temperature To which can 
beunderstood physically as arising from the competition between compact and ramified 
d@krs. ’he former are energetically favoured but have little entropy and therefore 
‘hate at sufficiently low temperatures. The latter do not make economic use Of 
*%Y but have large entropy, and are therefore favoured at higher temperatures. TO 
Bn be loosely described as the temperature of crossover from the dominance Of 
“pact 

,When T< To the phase terminates in an essential singularity. As Fisher (1967) has 
Polnted Out, a singularity of this kind would be extremely difficult to identify experi- 
&‘!‘y* BY Preventing clusters from growing beyond a specific size it should be 
bbletoextend the phase beyond the singularity, and in this region the standard ideas 
O1nucleation theory can be applied (Domb 1973). 
. ?en *> To however, the phase terminates in a spinodal which is a singularity 
war critical point, and should be clearly accessible to experimental observation. 

to that of ramified clusters. 
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There is good experimental evidence for the existence Of spinodals (eg Chu eta/ 1969) 
In Fisher’s picture they are non-thermodynamic (and are therefore d e h h  4 
‘pseudo-spinodals’) whereas in our picture they represent the termination of 
metastable thermodynamic phase. In a numerical analysis Of low-temperatme series 
for the Ising model, Gaunt and Baker (1970) were able to locate a spinodal curve near 
T, and estimate its critical behaviour. Their evidence is clearly consistent withom 
analysis. However, a Monte-Carlo investigation (Binder and Muller-Krumbhaar 194) 
failed to reveal a spinodal at the point predicted by Baker and Gaunt. The situatiak 
therefore somewhat confused, and further investigations using series and Monte-& 
methods would be welcome. 

When excluded volume effects are significant we have found it convenient toroaa 
attention on lattice configurations rather than on droplets or clusters, and we find that 
critical behaviour is determined by ramified configurations, since compact mnfim. 
tions are dampened out. This fits in with the analysis of Domb and Guttmann (1970) 
who found that the complexities of behaviour of low-temperature series for different 
lattices, which give rise to individual patterns of non-physical singularities, 
reasonably be explained by taking account of Cayley tree configurations alone. It &, 
enables one to understand why critical exponents are symmetric above and below T, 
since the high-temperature exponents are determined by series which are dominatdby 
ramified configurations of various types (Domb 1972). Scaling theory then indicates 
that one should pass to low temperatures with the same configurations re-organizedin2 
different manner. 

Since a key characteristic of Curie point behaviour is long-range correlation, the 
suggestion that only ramified configurations play a part in its neighbourhood makes 
reasonable sense physically. These configurations extend over a much larger area than 
compact configurations, and if one wishes to ‘communicate’ over a long range it is 
inefficient to use compact configurations. 

However, in the neighbourhood of T, our treatment is not sufficiently refined to 
provide a detailed description of critical exponents and critical behaviour. In particular. 
no significance should be attached to the portion of the curve of singularities in figure 9 
which extends to temperatures above T,. The behaviour of the curve of singularitiesai 
T, needs more careful attention. 

We feel it important to distinguish between Curie point critical behaviour and 
percolation critical behaviour. The latter arise even in random mixtures with no energ 
of interaction, and will therefore be present in the king model even at 
temperatures. The clusters which give rise to percolation are geometrical cluskn. 
whilst those which give rise to Curie point behaviour are physical clusters in which the 
surface tension plays a major role. Therefore, whilst the statistical distribution 
cluster size is immediately relevant to percolation critical exponents, we do not think 
that it has any direct connection with Curie point critical exponents. 

The Occurrence of percolation in Ising systems has been the subject of recentsN@ 
(Miiller-Krumbhaar 1974, Coniglio 1975) and it has been suggested that in 
dimensions, since infinite clusters can occur at temperatures well below T,, theseml@ 
exercise an important influence on the physical behaviour of the Jsing model. we * 
not feel this to be the case, since the occurrence of infinite clusters below Tc ! a 
lattice-dependent property and does not arise, for example, in the hydrogen F.mn’ 

behaviour of the ferromagnetic Ising model should not depend in any fundmeDdw 
on lattice structure. 

lattice with coordination number 3. According to current ideas of univers&q the 
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finally discuss the general theorem of Lanford and Ruelle (1969) which 
todl systems with short-range forces. These authors showed that if the stable 

the assumption of analyticity in the multiple correlation functions leads 
be probabilities in at least one of them. If the latter possibility is excluded on 
gounds, then at least one of the multiple corre€ation functions must have a 

y ares in the strict thermodynamic sense for systems with short-range forces. 
&rever,the theorem does not necessarily conflict with the conclusions we have drawn 

ne relationship between the theorem and our own work might be clarified if 
g&prational treatment were extended to the study of correlation functions. It 

&o help if more light were shed on the nature of the state to which the theorem 
,and whether the definitioii of metastability used in 0 3 precludes its application. 

CaDOdynmic ti" 

e. This theorem has been interpreted as excluding the possibility of meta- 

state is not analytic at a given point (as is the case in a first-order phase 

merits 

&author has benefited from a discussion with Pfofessor F C Frank and from 
arrespondence with Dr K Binder and Dr A J Guttmann. 

This research is supported (in part) by the European Research Office of the US 
by*  

+dig. Cluster integral caiculation of interaction functions 

halattice gas the function fij, which occurs in the Mayer cluster integrals, reduces to a 
&of 6-functions. A cluster integral then reduces to a cluster sum, 

Sfbe vertices i, j ,  k . . . 1  of a connected graph. The function f i j  has the following 
% 

(32) ft=-1 

and i are situated on the same lattice point; 

kiadi are nearest neighbours on the lattice; hj is zero elsewhere. In case (32) we 
'hdescnbe the interaction as a pin, and in the latter case as a link, following 

with 1 edges the sum (31) consists of 2' different terms corresponding to 
combinations of pins and links, and each term can be related to one 

the lattice. (The method can be applied when all the interactions 
Wnangto different lattice bonds are different; in many respects it is convenient 
gkM%thiS general case, and subsequently make all the interactions equal.) We 
'SBmtbetemsof all the different cluster sums which are related to one particular 
*g; those which give rise to a function +$(y, z) for the embedding which can be 
%bomfhite cluster partition functions as illustrated in (15), (16), (17) and (21) 

IWeY (1959). 
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for the simplest embeddings (4:i(y, 2) = ynZS$?dY, 2)). When we sum Over all embed. 
dings we obtain an expansion analogous to (14) but involving weak lattice 
g i h  0 (d (2)), 

(31 

k t  us focus attention on one particular embedding whose vertices are lattice poing 
which we denote by Greek letters a, B . . .7. We can expand 4:.)1 as a power series inA 
whose coefficients are polynomials in f. The lowest term is of order An,  and arisesWb 
i, j .  . . k coincide in some re-arrangement with a, P . . . Y, and all the interactions an 
links. The l/n! factor in (31) then disappears because of the 'n! possible re. 
arrangements of i, j . . . k, and this term can then be evaluated as A "f'. 

For a term in An+' two of the vertices i, j .  . . k must coincide with one of (a, 6 . .  . 
Starting with our original A "  configuration, we must enumerate ail possible ways ,,f 
introducing one additional vertex. There are two alternative possibilities, (a )  e/eaone 
of (a, B .  . . y), introduce a new vertex coincident with it and connect the new vertex to 
(a, p .  . . 7 )  by pins or links, (b)  decompose one of the old vertices into two parts, sod 
connect other vertices by pins or links. The different interaction graphs arising from 
these alternatives are illustrated diagrammatically in figure 10 for a compacr em& 
ding, where links are denoted by solid and pins by dashed lines. The permutation fadm 
cancels again, and for compact lattice constants all graphs of type (b )  group togelherb 
pairs with equal and opposite signs; we therefore obtain a total contribution -nA"+'fl. 

For a term in h "+* two new vertices must be introduced and connected in all possible 
ways among themselves and to (a, p . . . y) by pins or links. The problem becomesmore 
complicated and we shall not list all the possible new diagrams. It is easy to see that their 
total number is of order n2, and that the total number for r new vertices is oforder n'. 

In Z= gib, M ! $ ( y ,  2). 
i,n 

T (Dl 

R 

lo1 
vaar F@Ue 10. Examples of interaction diagrams arising from the insertion of anextra 

(0 )  addition of a vertex P* at P; (b)  decsmposition of vertex P into P' andfP". F'w 
represent links and broken lines represent pins. The pairs B, B'; C, C'; D, D ; E ,  
F have opposite signs and cancel. 

EardF. 
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wwe conclude that equation (22) is valid for a compact cluster, with &(y, Z )  
horn 
Tr$kl as an illustration of the method outlined above to reproduce the 

wonsfor simple clusters given in (16), (17) and (21). e 

v 

w$k3 (T-460) 
Mw 1939a J,  hem P~Ys .  7 324-6 
-1939b J. Chem Php. 7 927-31 
* ~ d D a + g W  1935 Ann. Phys., LPZ. 24 710-52 
@A(193g) pm University of Leiden 
w K a n d  ~aller-mmbhaar H 1974 Phys. Rev. B 9 2328-53 
o b s ~ w  1971 &tical Phenomena in Alloys, Magnets and Superconductors eds R E Mills, E Ascher and 

&B,mna F J and Fisher M E 1969 Phys. Reo. 185 219-26 
A 197 j J. phys. A: Math. Gen. 8 

wc 1969 Advances in Chemical Physics vol 15 (Chichester: Wiley) pp 229-59 
-19721. hys. C: Solid Si. Phys. 5 1399-416 - 1973 J. fiys. C Solid St. Phys. 6 39-42 
- 1974 phase Tramitions and Critical Phenomena eds C Domb and M S Green (New York: Academic 

-]gj MWOW Semiwr on Collective Phenomena and the Applications of Physics to otherfields of Science 

WCandGuttmann A J 1970 J. Phys. C ,  Solid St. Phy. 3 1652-60 
WCaod Hiley B J 1962 Proc. R. Soc. A 268 50626 
EBrmJWand Fiiher M E 1963 J. Chem. Phys. 38 802-12 

W5 1939a J. Chem. Phys. 7 200-1 - 1939b I .  Chem Phys. 7 538-47 
Ff6K1912 Roc. R. Soc. A 179 340-61 
btDSandBaker G A 1970 Phys. Reo. B 1 1184-210 
WDS and Domb C 1975 Absrr. Pap. presented at Int. Conf. on Statistical Mechanics, Budapest 

hBJandSykesMF 1961 J. Chem. Phys.34 1531-7 
MmdD E and Ruelle D 1969 Commun. Math. Phys. 13 194-2 15 
b - b b h a a r  H 1974 Phys. Len. 50 A 2 7 4  
BtaaoL 1970 Phys. Lett A 519-20 
PmtoLadRastelli E 1972 J. Phys. C: Solid St. Phys. 5 2785-804 
*lreG s and Scoins H I 1955 Proc. R. Soc. A 230 74-90 
w@D*Eang c S and Walker G H 1971 J. Statist. Phys. 3 325-30 
'-yHNV 1959 Proc. Phys. Soc. 74  183-95 
*GEand Ford G W 1962 Studies in Statistical Mechanics, vol 1 eds J de Boor and G E Uhlenbeck 
v (Amskr&m: . .  North-Holland) pp 119-21 1 

M 1972 Phase Transitions and Critical Phenomena eds C Domb and M S Green, chap 2 

YIDgCN 1972 phase Transitions and Critical Phenomena, vol 1 eds C Domb and M S Green (London: 

'qCNaodhTD 1952 Phys. Reo. 87 404-9,410-9 
ymr1945 Gh Phys. NO. 28 
- 'waphys .  Nos. 31, 32 
%ACa1969 Nucleation (Pans: Dekker) 

Gilbert H E, Eve J and Rushbrooke G S 1967 Brookhaven National Laboratory Report No. 

RI jafiee (New York: McGraw-Hill) pp 41-64 

Rm)chaps 1.6 

(Word Pergamon) in the press 

MUME 1967 Physics 3 255-83 

e C and Lebowitz J L 1975 Phase Transitions and Critical Phenomena, vol5b eds C Domb and 
MS Green (London: Academic Press) 

hn: Academic Press) 

MmiCReSs) p 15 


